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Abstract
The Yang–Lee, Fisher and Potts zeros of the one-dimensional Q-state Potts
model are studied using the theory of dynamical systems. An exact recurrence
relation for the partition function is derived. It is shown that zeros of the
partition function may be associated with neutral fixed points of the recurrence
relation. Further, a general equation for zeros of the partition function is found
and a classification of the Yang–Lee, Fisher and Potts zeros is given. It is shown
that the Fisher zeros in a nonzero magnetic field are located on several lines
in the complex temperature plane and that the number of these lines depends
on the value of the magnetic field. Analytical expressions for the densities of
the Yang–Lee, Fisher and Potts zeros are derived. It is shown that densities of
all types of zeros of the partition function are singular at the edge singularity
points with the same critical exponent σ = − 1

2 .

PACS numbers: 05.50.+q, 05.10.−a, 75.10.−b

1. Introduction

It is well established that the thermodynamic properties of a physical system can be derived
from a knowledge of the partition function. Since the discovery of statistical mechanics it
has been a central theme to understand how the analytic partition function for a finite-size
system acquires a singularity in the thermodynamic limit if the system undergoes a phase
transition. The answer to this question was given in 1952 by Lee and Yang in their famous
papers [1]. They considered the partition function of the Ising model as a polynomial in
activity (exp(−2H/kT ), where H is a magnetic field) and studied the distribution of zeros
of the partition function in the complex activity plane. It was shown that phase transitions
occur in the systems where a continuous distribution of zeros of the partition function cuts
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the real axis in the thermodynamic limit. The circle theorem, which states that zeros of
the partition function of the ferromagnetic Ising model lie on the unit circle in the complex
activity plane (Yang–Lee zeros) was also proved. Later, Fisher [2] initiated a study of zeros
of the partition function in the complex temperature plane (Fisher zeros). Fisher showed that
complex temperature zeros of the partition function of the Ising model in zero magnetic field
on a square lattice lie on two circles |v ± 1| = √

2, where v = tanh(J/2kT ). Since that time
zeros of the partition function have been studied for the Ising and Potts [3] models on various
regular lattices, most notably in recent years [4–8]. Zeros of the partition function were also
studied for spin models defined on hierarchical [9] and recursive [10] lattices, random graphs
[11] and aperiodic systems [12], spin glasses [13], percolation and self-organized criticality
models [14].

Recently, Alves and Hansmann [15] studied the helix–coil (order–disorder) transition in
the model of polyalanine with long-range interactions (the all-atom model) by calculating
zeros of the partition function. Using the microcanonical algorithm [16], they showed that
the distribution of the Yang–Lee and Fisher zeros of the all-atom model differs from the
predictions of the Zimm–Bragg theory [17]. Moreover, the distribution of Yang–Lee and
Fisher zeros of the all-atom model supports recent claims that the polyalanine exhibits a true
phase transition [18]. Although their results were not precise enough to determine the order
of the phase transition due to the complexity of the simulated model, they demonstrated that
the transition may be described by a set of critical exponents. Applying the finite-size scaling
analysis to zeros of the partition function they found new estimates for the critical exponents
α, β, γ and dν. Based on their study of zeros of the partition function Alves and Hansmann
[15] concluded that the helix–coil transition in a polyalanine is not accurately described by
the Zimm–Bragg model and that a more detailed, all-atom model of polyalanine should be
used [15].

It is noteworthy that the classical one-dimensional Potts model was employed in [19]
for the solvent influence on the helix–coil transition in polypeptides. Also, it has been
shown that a multisite interaction Potts model may be used for studying helix–coil transitions
in polypeptides [20]. It is outside the scope of this paper to investigate the properties of
biological macromolecules, but we believe that the study of general properties of zeros of
the partition functions for different one-dimensional systems may serve as a new independent
method for investigating the properties of macromolecules as was done in [15].

In 1994, Glumac and Uzelac [21] using the transfer matrix method studied the Yang–Lee
zeros of the one-dimensional ferromagnetic Potts model for non-integer values of Q � 0.
They showed that for 0 < Q < 1 the Yang–Lee zeros are located on a real interval and for
low temperatures these are located partially on the real axis and in complex conjugate pairs
on the activity plane. Later on, Monroe [22] numerically studied the Yang–Lee zeros of the
Potts model for some particular values of Q. Then, Kim and Creswick [23] showed that for
Q > 1 the Yang–Lee zeros lie on a circle with radius R, where R < 1 for 1 < Q < 2, R > 1
for Q > 2 and R = 1 for Q = 2. Only recently has the full picture of Yang–Lee zeros of the
ferromagnetic Potts model for 0 < Q < 1 been found [10].

In this paper, the dynamical systems theory is used to study the Yang–Lee, Fisher and
Potts zeros3 of the partition function for the one-dimensional Q-state Potts model. In section 2,
a recurrence relation for the partition function is derived. It is shown that zeros of the partition
function may be associated with neutral fixed points of the recurrence relation. A general
equation for zeros of the partition function is derived. Formulae for the free energy and the
density of zeros of the partition function are found. In sections 3 and 4 the method developed in

3 Zeros of the partition function are considered as a function of complex Q.



Partition function zeros of the one-dimensional Potts model 6299

σ0σ−1σ−n σ1

σ0 σ0σ−1 σ1

σ2σ−2 σ nII I

(   )n (   )nn−1
(    ) (   )

n−1

Figure 1. The procedure for derivation of the recurrence relation for the partition function.

section 2 is used to study the Yang–Lee and Potts zeros of ferromagnetic and antiferromagnetic
Potts models. A classification of Yang–Lee and Potts zeros is given. In section 5, the Fisher
zeros in a nonzero magnetic field are investigated. It is shown that the Fisher zeros in a nonzero
magnetic field are located on several lines in the complex temperature plane and the density
of Fisher zeros is singular at the edge singularity points with the same critical exponent as that
of both the Yang–Lee and Potts zeros, σ = − 1

2 .

2. Zeros of the partition function of the Potts model

The Hamiltonian of the one-dimensional Q-state Potts model in a magnetic field is defined as
follows:

H = −J̃
∑
〈ij〉

δ(σi, σj ) − H̃
∑

i

δ(σi, 0) (1)

where δ is the Kronecker delta function, σi denotes the Potts variable at site i and takes the
values 0, 1, 2, . . . ,Q − 1. The first sum on the rhs of (1) goes over all edges and the second
one over all sites on the lattice. For J̃ > 0 the model is ferromagnetic and for J̃ < 0 is
antiferromagnetic. Note that due to the symmetry, the Hamiltonian (1) is the same if the
external field H̃ is applied to any spin state, namely, if δ(σi, 0) in (1) is replaced by δ(σi, α)

for any α = 1, 2, . . . ,Q − 1. For Q = 2 the Potts model corresponds to the Ising model and
in order to keep the analogy with the Ising model we designate H̃ as a magnetic field. We may
assume the cyclic boundary condition σn = σ−n and that the number of sites is 2n + 1 without
loss of generality. Cutting the lattice at the central site σ0 will separate it into two branches I
and II with equal statistical weights gn(σ0) (figure 1)

gn(σ0) =
Q−1∑
σ1=0

Q−1∑
σ2=0

. . .

Q−1∑
σn=0

n∏
i=1

exp[J δ(σi−1, σi) + hδ(σi, 0)]. (2)

Cutting the branch I (II) at the site σ1 (σ−1), the recurrence relation for gn(σ ) may be
found as

gn(σ0) =
Q−1∑
σ1=0

exp[J δ(σ0, σ1) + hδ(σ1, 0)]gn−1(σ1) (3)

where J = J̃ /kT and h = H̃/kT . The partition function may be written in the form

Z =
∑

σ

e−H/kT =
Q−1∑
σ0=0

exp[hδ(σ0, 0)]g2
n(σ0). (4)

Introducing the notation

xn = gn(σ �= 0)

gn(σ = 0)
(5)
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and using (3), the recurrence relation for xn may be found as

xn = f (xn−1) f (x) = µ + (z + Q − 2)x

zµ + (Q − 1)x
(6)

where µ = eh, and z = eJ . xn does not have a direct physical meaning, but the thermodynamic
functions, such as the magnetization, the specific heat, etc, may be expressed in terms of xn.
For example, the magnetization for our model in the thermodynamic limit has the form

m = (NZ)−1
∑
{σ }

δ(σ, 0) e−H/kT = µ

µ + (Q − 1)x2
(7)

where x is an attracting fixed point of the mapping (6). It will be shown below how the
thermodynamic properties of the model may be defined from the dynamics of the recurrence
relation (6).

The mapping (6) is a Möbius transformation, i.e. a rational map of the form

R(x) = ax + b

cx + d
ad − bc �= 0

where

R(∞) = a/c R(−d/c) = ∞
if c �= 0, while R(∞) = ∞ when c = 0. The dynamics of such maps is well studied [24].
The mapping (6) has only two fixed points which are solutions to the equation f (x) = x.
According to the theory of complex dynamical systems, fixed points are classified as follows:
a fixed point x∗ is attracting if |λ| < 1, repelling if |λ| > 1, and neutral if |λ| = 1, where
λ = d

dx
f (x)|x=x∗ ≡ f ′(x∗) is called the eigenvalue of x∗. It is easy to show that either

both fixed points of the mapping (6) are neutral, or that one of them is attracting while the
other is repelling. The correspondence between thermodynamical properties of the model and
the dynamics of the mapping (6) is the following: if for a given temperature and magnetic
field (z and µ) the mapping (6) has an attracting fixed point, then the system is in a stable
paramagnetic state and its thermodynamical functions are defined by this fixed point (see, for
example, (7)). The other fixed point is repelling and does not correspond to any phase. On
the other hand, if the iterations of (6) do not converge to a fixed point, i.e. the mapping (6) has
neutral fixed points only, the system undergoes a phase transition. Therefore, the existence of
neutral fixed points of (6) corresponds to a phase transition in the model. It was mentioned
in the introduction that zeros of the partition function correspond to phase transitions in the
model. Thus, for our model zeros of the partition function are associated with neutral fixed
points of the corresponding mapping. These may be found from the conditions of existence
of neutral fixed points of the mapping (6). These conditions are the following:{

f (x) = x

f ′(x) = eiφ φ ∈ [0, 2π].
(8)

Excluding x from the system (8) after some algebra the equation of phase transitions may be
found as

z2µ2 − 2[(z − 1)(z + Q − 1) cos φ + 1 − Q]µ + (z + Q − 2)2 = 0 (9)

where φ ∈ [0, 2π]. Solutions to this equation for different values of φ correspond to zeros of
the partition function. Hence, the free energy of the model may be written in the form

F ∼
∫ 2π

0
ln(z2µ2 + 2(Q − 1)µ + (z + Q − 2)2 − 2µ(z − 1)(z + Q − 1) cosφ) dφ. (10)
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Formula (10) may also be derived from the transfer matrix method [21, 26] using two non-
degenerate eigenvalues of the transfer matrix [26]

λ∗
1,2 = 1

2

[
zµ + z + Q − 2 ±

√
(zµ − z − Q + 2)2 + 4(Q − 1)µ

]
(11)

and the following mathematical identity for any pair of scalars C,D:

CN + DN =
∏
n

[C + exp(2π in/N)D]

where the product is from n = 1, 2, . . . , N if N is odd; and from n = 1/2, 3/2, . . . , N − 1/2
for N is even (see [27]). Moreover, one can easily show that the eigenvalues of fixed points of
(6) are related to the eigenvalues of the transfer matrix (11) as follows:

λ1,2 = 4µ(z − 1)(z + Q − 1)(
λ∗

1,2

)2 .

Hence, the condition of a phase transition |λ1| = |λ2| (λ1 and λ2 are the eigenvalues of neutral
fixed points) corresponds exactly to the

∣∣λ∗
1

∣∣ = ∣∣λ∗
2

∣∣ condition for the eigenvalues of the
transfer matrix (11). It means that the phase transition point based on the dynamical systems
approach coincides exactly with the phase transition point based on free energy considerations.
This correspondence seems to be general for spin models defined on recursive lattices
[10, 28].

The density of zeros of the partition function may be found by differentiating both sides
of equation (9) with respect to φ and ξ and has the form

g(ξ) = B∂ξA − A∂ξB

2πB[−(A − B)(A + B)]
1
2

(12)

where ∂ξ = ∂
∂ξ

,

A = z2µ2 + 2(Q − 1)µ + (z + Q − 2)2 B = 2µ(z − 1)(z + Q − 1)

and ξ = µ, z or Q depending on whether the Yang–Lee, Fisher or Potts zeros are considered.
It is interesting to note that in our case the numerator of (12) always contains the multiplier
(A + B). Hence, the density g(ξ) is singular only when A − B = 0.4 From (12) it follows
that g(ξ) has a singular behaviour g(ξ) ∼ |ξ − ξ∗|σ , where ξ∗ is a solution to the equation
A − B = 0. We will see that σ = − 1

2 for all types of zeros of the partition function. Also,
note that the equation A − B = 0 corresponds to the phase transitions equation (9) for φ = 0.
It defines the edge singularity points [10, 25]. In the subsequent sections we will apply
equations (9) and (12) to the study of the Yang–Lee, Potts and Fisher zeros.

3. The Yang–Lee zeros

According to the results of the previous section the Yang–Lee zeros of the Q-state Potts model
may be found by solving equation (9) with respect to µ. Equation (9) is a quadratic equation
of µ with real coefficients. Note that solutions to equation (9) lie either on the real axis or in
complex conjugate pairs on a circle with radius R = |z + Q − 2|/z and have the form

µ1,2 = E

[
2 cos2 φ

2
− F ± 2

√
cos2

φ

2

(
cos2

φ

2
− F

) ]
(13)

where

E = (z − 1)(z + Q − 1)

z2
and F = z(z + Q − 2)

(z − 1)(z + Q − 1)
.

4 Solutions to the equation B = 0 should be neglected since these do not correspond to zeros of the partition function.
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Figure 2. A schematic presentation of the Yang–Lee zeros of 1D ferromagnetic Potts model. Here
R = z+Q−2

z
and µ± are defined in (15).

A detailed study of (9) with respect to µ has already been performed [10]. Here, we will present
only the main results for the Yang–Lee zeros of both ferromagnetic and antiferromagnetic Potts
models.

For the ferromagnetic Potts model (z > 1) one can find that for Q > 1 all solutions (13)
are complex conjugate and lie on an arc of circle with radius R = (z + Q− 2)/z. Writing µ in
the exponential form µ = R eiθ the angular distribution of the Yang–Lee zeros may be found
in the form

cos
θ

2
=

√
F−1 cos

φ

2
. (14)

From (14) one can see a gap in the distribution of Yang–Lee zeros, i.e. there are no solutions
to equation (9) in the interval −θ0 < θ < θ0, where θ0 = 2 arccos

√
F−1. This is the well-

known gap in the distribution of Yang–Lee zeros of ferromagnetic models above the critical
temperature (formally Tc = 0 for the one-dimensional case) first studied by Kortman, Griffiths
and Fisher [25]. The endpoints of the gap are called Yang–Lee edge singularity points. From
(9) and (14) it follows that the Yang–Lee edge singularity points correspond to φ = 0. Hence,
according to (12) the density of Yang–Lee zeros is singular in the Yang–Lee edge singularity
points. Substituting φ = 0 into (13) the formula for Yang–Lee edge singularity points we
have

µ± = 1

z2

{√
(z − 1)(z + Q − 1) ±

√
1 − Q

}2
. (15)

Substituting ξ = µ ≡ Reiθ in (12) after some algebra, the density of Yang–Lee zeros for
Q > 1 may be found in the form

g(θ) = 1

2π

∣∣ sin θ
2

∣∣√
sin2 θ

2 − sin2 θ0
2

. (16)

From equation (16) it follows that the density g(θ) diverges in the Yang–Lee edge singularity
points µ± with the critical exponent σ = − 1

2 , i.e. g(θ) ∝ |θ − θ0|− 1
2 when φ → 0 or θ → θ0.

For Q < 1 the Yang–Lee edge singularity points µ± are real and the density of Yang–Lee
zeros has the form

g(µ) = 1

2πµ

|µ − √
µ+µ−|√

(µ+ − µ)(µ − µ−)
. (17)

g(µ) diverges in the points µ±, i.e. g(µ) ∝ |µ − µ±|σ , with the critical exponent σ = − 1
2 .

The summary of results for the Yang–Lee zeros of the ferromagnetic Potts model is given in
figure 2.
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Figure 3. A schematic presentation of the Yang–Lee zeros of 1D antiferromagnetic Potts model.
Here R = 2−Q−z

z
and µ± are defined in (15).

The Yang–Lee zeros of the antiferromagnetic Potts model (z < 1) may be studied in the
same manner and the results are given in figure 3. For complex µ± the angular distribution of
Yang–Lee zeros has the form

sin
θ

2
=

√
F−1 cos

φ

2
. (18)

In contrast to the ferromagnetic case,now the Yang–Lee zeros lie in the interval −θ∗ < θ < θ∗,
where θ∗ = 2 arcsin

√
F−1. The density of Yang–Lee zeros in this case has the form

g(θ) = 1

2π

cos θ
2√

sin2 θ∗
2 − sin2 θ

2

. (19)

For real values of µ± the density of Potts zeros has the same form as for the ferromagnetic
case (17). Actually, formula (17) is the most general from which formulae (16) and (19) may
be derived (see also section 4). Note, that here also the density of Yang–Lee zeros diverges at
the Yang–Lee edge singularity points with the same index σ = − 1

2 .

4. The Potts zeros

Recently, much attention has been given to the study of zeros of the partition function in
the complex Q plane for the Potts model on regular lattices and finite graphs [29]. The
partition function of the Potts model (H = 0) on a finite graph G,ZG(Q, v), may be
considered as a polynomial in the number Q of Potts states and the temperature-like variable
v = exp(J̃ /kT )− 1. At zero temperature the partition function of the antiferromagnetic Potts
model (v = −1) corresponds to the chromatic polynomial PG(Q), which is closely related to
the Q-colouring problem. By definition, for graph G and positive Q,PG(Q) is the number of
ways in which the vertices of G can be assigned ‘colours’ from the set 1, 2, . . . ,Q in such a
way that adjacent vertices always receive different colours. The original hope was that study
of the real or complex zeros of PG(Q) might lead to an analytic proof of the four-colour
conjecture, which states that PG(4) > 0 for all loopless planar graphs. To date this hope has
not been realized, although combinatoric proofs of the four-colour theorem have been found
[30]. Even so, the Potts zeros and zeros of PG(Q) are interesting in their own right and have
been extensively studied in recent years [29–31].

In this section the Potts zeros of ferromagnetic and antiferromagnetic one-dimensional
Potts models are studied. It was shown in section 2 that zeros of the partition function
correspond to solutions of equation (9), which is a polynomial in Q. Hence, the Potts zeros
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Figure 4. A schematic presentation of the Potts zeros of 1D ferromagnetic Potts model. Here
R = zµ − 1 and Q± are defined in (22).
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Figure 5. A schematic presentation of the Potts zeros of 1D antiferromagnetic Potts model. Here
R = 1 − zµ and Q± are defined in (22).

may be found as solutions to (9) with respect to the parameter Q. It is convenient to rewrite
(9) using the variable P = Q + z − 1 as

P 2 − 2P [1 − µ + µ(z − 1) cos φ] + (1 − zµ)2 = 0. (20)

Equation (20) is a quadratic equation in P with real coefficients. Solutions of (20) lie either
on the real axis or on the circle with radius R = |1 − zµ| in the complex plane P, and have
the form

P1,2 = 1 − µ + µ(z − 1) cos φ ± 2 cos
φ

2

√
µ(z − 1)

(
1 − µ − µ(z − 1) sin2

φ

2

)
. (21)

Since the analysis of (21) is standard, we will skip the details and give the results in figures 4
and 5 for ferromagnetic and antiferromagnetic Potts models, respectively. In analogy with the
Yang–Lee zeros, the Potts edge singularity points are defined as solutions to equation (20) for
φ = 0, and have the form

Q± = P± − z + 1 = 1 − z +
(√

1 − µ ±
√

µ(z − 1)
)2

. (22)

The general formula of the density of Potts zeros has the form

g(P ) = 1

2πP

|P − √
P+P−|√

(P+ − P)(P − P−)
. (23)

From (23) it follows that the density of Potts zeros is singular at the Potts edge singularity
points. For complex values of Q±, (23) may be written in the form

g(θ) = 1

2π

∣∣ sin θ
2

∣∣√
sin2 θ

2 − sin2 θ0
2

(24)
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for the ferromagnetic model, where |θ | > θ0 and θ0 = 2 arccos(µ(z − 1)/(µz − 1))−
1
2 . For

the antiferromagnetic model, g(θ) has the form

g(θ) = 1

2π

cos θ
2√

sin2 θ0
2 − sin2 θ

2

(25)

where |θ | < θ0 and θ0 = 2 arcsin(µ(1 − z)/(1 − µz))−
1
2 . Different formulae for the density

of Potts zeros occur because the square root function in (23) is not a unique function in
the complex plane P, i.e. one branch of the square root function in (23) corresponds to the
ferromagnetic model and the other to the antiferromagnetic.

It is noteworthy that the density of Potts zeros diverges at the Potts edge singularity points
with the same critical exponent σ = − 1

2 as for the Yang–Lee zeros.

5. The Fisher zeros

In this section the Fisher zeros in a nonzero magnetic field are studied. Usually, the Fisher
zeros are considered as zeros of the partition function with respect to a temperature-dependent
parameter. In our case z is such a parameter. Formally, the magnetic field in the Hamiltonian
(1) may be presented in the form H̃ = HJ̃ , where H is the renormalized magnetic field. Later
we will refer to H as a magnetic field. Then, µ may be written as zH and equation (9) has the
form

Pφ(z,H,Q) = 0 (26)

where

Pφ(z,H,Q) = z2H+2 − 2 cos φzH+2 − 2(Q − 2) cosφzH+1 + 2(Q − 1)zH + (z + Q − 2)2.

Pφ(z,H,Q) is obviously a polynomial for integer values of H and (26) may be solved
numerically. For non-integer values of H equation (26) becomes a transcendental equation
and the Fisher zeros may be found by numerically checking the condition of existence of
neutral fixed points of the mapping (6).

The density of Fisher zeros may be found from (12) by substituting ξ = z and has the
form

g(z) = 1

2π

HG1(z,H,Q) − zG2(z,H,Q)

(z − 1)z(z + Q − 1)
√−P0(z,H,Q)

(27)

where

G1(z,H,Q) = (z − 1)(z + Q − 1)(zH+1 − z − Q + 2)

G2(z,H,Q) = (zH − 1)(2(z + Q − 1) − Qz) + Q2.

From (27) it follows that the density of Fisher zeros is singular in the Fisher edge singularity
points, which are defined as solutions to equation (26) for φ = 0.

Let us first study the Fisher zeros for the Ising model (Q = 2). For Q = 2 equation (26)
has the form

z2H+2 − 2 cos φzH+2 + 4 cos2 φ

2 zH + z2 = 0. (28)

This equation is symmetric under the H → −H transformation because of the Z(2) symmetry
of the Ising model. Since all coefficients of (28) are real, its solutions will be either real or
complex conjugate. For integer values of H the Fisher zeros have the form shown in figure 6.
From figure 6 and (28) one can see that the Fisher zeros are located on lines ending at the
Fisher edge singularity points and the number of lines equals the value of the magnetic field
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Figure 6. The Fisher zeros of 1D Ising model for different values of a magnetic field. The big
dots at the ends of the lines show Fisher edge singularity points.

|H | + 1. Fisher edge singularity points are divided into pairs and every pair corresponds to
a line. Note that z = 0 is a twice degenerate Fisher edge singularity point with the critical
exponent σ = − 1

2 . Formally, two degenerate z = 0 edge singularity points are considered
here as forming a ‘line’. One can see that for odd values of |H | there are negative Fisher zeros
and for |H | = 4n, n ∈ N , the Fisher zeros are partially located on the imaginary axis. Since
Pφ(z,H,Q) is an analytic function of H the lines of Fisher zeros for non-integer values of H
are continuous deformations of Fisher zeros in the field [|H |] or [|H |] + 1, where [|H |] is the
integer part of |H |, i.e. the minimal integer less than |H |. The location of Fisher zeros for
non-integer H may be found numerically from the condition of existence of neutral fixed points
of the mapping (6). As an illustration the Fisher zeros for non-integer values of 0 < H < 2
are given in figure 7.

The Fisher zeros for Q �= 2 Potts model may be studied in the same way as for the Ising
model. It is impossible to give all possible configurations of Fisher zeros for any H and Q.
Here we give only the summary of the main properties. First of all, there is no H → −H

symmetry for Q �= 2 and the Fisher zeros are different for positive and negative values of H.
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Figure 7. The Fisher zeros of the one-dimensional Ising model for non-integer values of a magnetic
field 0 � H � 2.

For Q = 1 the Fisher zeros are located on a closed curve and the density of Fisher zeros
is not singular on this curve (figure 8).

For Q �= 1 Fisher zeros are located on several lines (figure 8) and the density of Fisher
zeros is singular at the endpoints of these lines with the edge singularity exponent σ = − 1

2 .
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Figure 8. The Fisher zeros of the one-dimensional Ising model for some integer values of a
magnetic field H and a Potts variable Q.

Numerical experiments show the following properties for integer values of H: for
0 < Q < 1 there is an interval of real Fisher zeros only for even values of H; for 1 < Q < 2,
the Fisher zeros intersect the negative real semi-axis only for odd values of H; for Q > 2 there
is an interval of real Fisher zeros only for odd values of H. The number of lines of Fisher zeros
is defined as in the Ising model. In figure 8 we give some plots that illustrate these properties.

6. Discussion of the results

In this paper, the Yang–Lee, Fisher and Potts zeros of the one-dimensional Q-state Potts model
are studied using the dynamical systems theory. A recurrence relation for the partition function
is derived. It is shown that for this model zeros of the partition function may be associated with
neutral fixed points of the corresponding recurrence relation. A general equation for zeros of
the partition function is derived. It is shown that for Q �= 1 the density of zeros of the partition
function is singular in the edge singularity points with the critical exponent σ = − 1

2 and the
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critical exponent σ is the same for all types of zeros of the partition function (the Yang–Lee,
Fisher and Potts zeros).

In section 2 we showed that the recursive method used in this paper is equivalent to the
transfer matrix method if one neglects the degenerated eigenvalues of the transfer matrix.
Indeed, the transfer matrix of the one-dimensional Q-state Potts model for integer values of
Q > 2 has Q eigenvalues, where Q − 2 eigenvalues are degenerated. For the Q > 1 case
Glumac and Uzelac [21] showed that in the thermodynamical limit the Yang–Lee zeros may
be found from the first two non-degenerate eigenvalues of the transfer matrix. For the Q < 1
case they considered the contribution of degenerated eigenvalues (λ2 in their notation) also.
This led to identities for low temperatures, and the full picture of Yang–Lee zeros for the
Q < 1 case was not found (for more details see [21]). Using a recursive method, we found
the Yang–Lee and Potts zeros for any value of Q analytically, and gave their full classification
for both ferromagnetic and antiferromagnetic interactions. We proved that the degenerated
eigenvalues of the transfer matrix do not affect the thermodynamic properties of the one-
dimensional Q-state Potts model, and in the transfer matrix method their contribution to the
partition function should be neglected.

It is noteworthy to discuss the properties of our model for the Q = 1 case. In this case
our model shows a different behaviour for zeros of the partition function compared to the
Q �= 1 models. Indeed, for Q = 1 the Yang–Lee and Fisher zeros lie on closed curves and
the density of zeros of the partition function is not singular on these curves. The reason for
such behaviour is that for Q = 1 the recursive mapping (6) is a linear transformation

xn = f (xn−1) f (x) = 1

z
+

z − 1

zµ
x. (29)

The derivative of (29) does not depend on x and has the form

df (x)

dx
= z − 1

zµ
. (30)

The mapping (29) has only one fixed point x∗ = µ(zµ − z + 1)−1, which is either attracting,
repelling or neutral. When the fixed point x∗ is attracting, i.e. |f ′(x∗)| < 1, the system is
in a stable state, and the order parameter (7) m = 1. In the case when the fixed point x∗ is
repelling, i.e. |f ′(x∗)| > 1, the system does not have an equilibrium state, since the mapping
(29) does not have other attracting fixed points. The mapping (6) also does not have attracting
periodical points. The periodical point of period n is defined as a solution to the equation
f n(x) = x, where f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n times

is a superposition function. According to the chain

rule for the derivative of a superposition function and the fact that the derivative (30) does
not depend on x, any periodical point of (29) is repelling when the fixed point x∗ is repelling,
i.e. |f ′(x∗)| > 1. Thus, for |f ′(x∗)| > 1 the system either crashes or remains always in a
non-equilibrium state. The border of the stability region is defined by the condition that the
only fixed point of the mapping (29) is a neutral fixed point. Hence, for the Q = 1 case, zeros
of the partition function in the complex plane separate a region, where the system is in a stable
state, from the region where the system either crashes or remains always in a non-equilibrium
state. Such behaviour is different from the Q �= 1 case, where zeros of the partition function
separate different ‘stable phases’ of the system on the corresponding complex plane. Now it
is clear why the Yang–Lee and Fisher zeros lie on closed curves for the Q = 1 case. Direct
calculation of densities of the Yang–Lee and Fisher zeros shows that the Yang–Lee and Fisher
zeros are uniformly distributed on closed curves and that their densities are not singular on
these curves.
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The relation between zeros of the partition function and the existence of neutral fixed
points of the recursive mapping gives a numerical algorithm for studying zeros of the partition
function. The algorithm is based on testing the condition of existence of neutral fixed points of
the corresponding recurrence relation: if neutral fixed points exist, then the partition function
is zero for given values of z, µ and Q. In section 5 we saw that this algorithm is very useful for
studying the Fisher zeros in an arbitrary magnetic field. Moreover, it is the only method for
studying the Fisher zeros for non-integer values of H, where H is the renormalized magnetic
field, H = H̃/J̃ . For integer values of H equation (26) is a polynomial, and the Fisher zeros
may be found as solutions to that polynomial. The crucial point, why we consider integer and
non-integer values of H, is that for integer values of H the number of Fisher edge singularity
points equals exactly the order of the polynomial P0(z,H,Q) (26), and the number of lines
on which the Fisher zeros lie may be found exactly (see section 5). Pφ(z,H,Q) (26) is an
analytic function of H, hence, the lines of Fisher zeros for non-integer values of H are smooth
deformations of the lines of Fisher zeros for the renormalized magnetic field, that is equal to
one of the integers near H. Integer values of renormalized magnetic field H should not lead to
a confusion, since, in this case, the magnetic field, which contributes to the Hamiltonian (1),
is simply a multiple of the pair interaction constant J̃ .

7. Conclusions

In conclusion we would like to note that the results given in this paper show that the
thermodynamic properties of the one-dimensional Potts model are completely defined by the
recurrence relation (6) or equivalently, by two non-degenerate eigenvalues of the corresponding
transfer matrix (11) (see also [10]). Moreover, it is proved that the phase transition point based
on the dynamical systems approach coincides exactly with the phase transition point based
on free energy considerations. The dynamical systems approach used here gives a numerical
method which may be used for studying other one-dimensional systems for which a one-
dimensional recurrence relation may be derived.
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